skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "M_Uzsoy, Ana_Sofía"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diffuse interstellar bands (DIBs) are broad absorption features associated with interstellar dust and can serve as chemical and kinematic tracers. Conventional measurements of DIBs in stellar spectra are complicated by residuals between observations and best-fit stellar models. To overcome this, we simultaneously model the spectrum as a combination of stellar, dust, and residual components, with full posteriors on the joint distribution of the components. This decomposition is obtained by modeling each component as a draw from a high-dimensional Gaussian distribution in the data space (the observed spectrum)—a method we call “Marginalized Analytic Data-space Gaussian Inference for Component Separation” (MADGICS). We use a data-driven prior for the stellar component, which avoids missing stellar features not well modeled by synthetic spectra. This technique provides statistically rigorous uncertainties and detection thresholds, which are required to work in the low signal-to-noise regime that is commonplace for dusty lines of sight. We reprocess all public Gaia DR3 RVS spectra and present an improved 8621 Å DIB catalog, free of detectable stellar line contamination. We constrain the rest-frame wavelength to 8623.14 ± 0.087 Å (vacuum), find no significant evidence for DIBs in the Local Bubble from the 1/6th of RVS spectra that are public, and show unprecedented correlation with kinematic substructure in Galactic CO maps. We validate the catalog, its reported uncertainties, and biases using synthetic injection tests. We believe MADGICS provides a viable path forward for large-scale spectral line measurements in the presence of complex spectral contamination. 
    more » « less